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We indicate by dD[a,b] 5 D[a] > D[b] the internal boundary
between the ath and the bth subdomain. This partitionA multidomain pseudospectral method, which is based on

Chebyshev polynomials expansions, is presented to solve an initial- must be such that any quantity remains of C y-class in each
boundary value problem in incompressible MHD, the tearing insta- subdomain D[a] during the time interval of interest. Then,
bility, in which a boundary layer is spontaneously generated inside a spectral method is used in each subdomain giving thethe spatial domain. The method is based on a property of Chebyshev

appropriate boundary conditions at the internal bound-pseudospectral expansions which accurately describe functions
aries. This kind of technique was used by Bonazzola andhaving strong gradients localized near one of the Chebyshev domain

boundaries. A comparison with the results of a single-domain pseu- Marck [2] to describe the shock propagation in fluid dy-
dospectral method is performed, showing that, in the considered namics; a moving internal boundary was placed at the
case, the multidomain technique furnishes a higher accuracy keep-

shock location, at any time step; on this boundary the shocking the truncation error to a lower level. Because of the steeper
jump conditions were used as boundary conditions. ThisChebyshev spectra lower aliasing errors are obtained during the

nonlinear stage of the instability. Q 1996 Academic Press, Inc. technique gives a very good approximation, since on each
side of the shock the solution is of C y-class.

If diffusive phenomena are present, such as in the viscous
1. INTRODUCTION fluid dynamics, the discontinuities associated with the

shocks are smoothed out and are replaced by more or less
Pseudospectral methods represent a powerful tool in the narrow regions where the quantities of the problem vary

numerical solution of nonlinear partial differential equa- with continuity from their values upstream to the values
tions, and in particular, the fluid dynamics or the magneto- downstream. In such a case, in consequence of the regular-
hydrodynamics (MHD) equations. When the solutions are ity of the solution, a spectral method could be successfully
sufficiently regular, such methods give an accuracy which used. However, in many applications the Reynolds number
is generally higher than the accuracy of finite-difference is quite large; this implies that the shock width is small
methods which uses the same number of points in the and large gradients develop at the shock location; i.e., the
spatial grid. For instance, when the solution is of C y-class shock tends to be a true discontinuity. In such a case, even
spectral methods can be roughly considered as an infinite though the quantities keep continuous, a large number of
order (in space) numerical scheme. terms (harmonics) are necessary in their spectral represen-

Actually, the accuracy of spectral methods is strictly tation in order to obtain a good accuracy in the numerical
related to the regularity properties of the solution: when solution. If the number of harmonics is not sufficient to
the quantities are of C p-class, spectral methods give origin accurately describe fast variations in the solution, oscilla-
to (p 1 1)-order schemes (see, e.g., [1]). As a consequence,

tions will appear at the shock location, similar to the Gibbs
a discontinuous solution is very poorly represented by a

phenomena of the nonviscous case.
spectral method. This happens, for instance, in the inviscid

However, despite this analogy between the inviscid and
fluid dynamics when a shock forms; the Gibbs phenomena

the weakly viscous fluid dynamics, in the latter case agenerated by the discontinuity completely destroy the ac-
multidomain technique does not necessarily improve thecuracy of the numerical solution. A way to overcome this
accuracy of the numerical solution. Actually, when fastproblems is to use a multidomain technique; if the quanti-
variation regions are present, instead of real discontinu-ties are piecewise C y-class the spatial domain D can be
ities, a high spatial resolution is required in these regions.divided into the union of K subdomains D[a]

Then, the advantage of using a multidomain or a single-
domain spectral technique depends only on the capability
of this method to give such a high resolution in the ‘‘diffu-D 5 <

K

a51

D[a].
sivity’’ regions.
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This can be actually achieved if a Chebyshev pseudo- nomials much lower than the single-domain method. This,
in turn, allows us to keep aliasing errors at a low levelspectral method is employed in association with a multido-

main technique. Solomonoff and Turkel [3] studied during the nonlinear stage of the instability.
the properties of pseudospectral methods based on a
Chebyshev expansion in cases when sharp variations are
present in the solution. The standard pseudospectral Cheb- 2. THE NUMERICAL METHOD
yshev expansion uses the following set of (N 1 1) colloca-

The Chebyshev pseudospectral multidomain techniquetion points
has been applied to the solution of an initial-boundary
value problem for the incompressible magnetohydrody-
namic equations. We considered two-dimensional config-xj 5 cosSfj

ND, j 5 0, ..., N, (1)
urations, where any physical quantity depends only on the
X and Y variables, and only the X and Y components of
vector quantities are nonvanishing. The equations of thein the spatial domain D 5 [21, 1]; however, sets of
incompressible MHD can be written in the dimen-collocation points different from (1) can also be used.
sionless formIn particular, Solomonoff and Turkel [3] considered both

the standard collocation points (1) and a set of uniformly
spaced collocation points. In both cases these authors ­Zs

i

­t
1 Z2s

k
­Zs

i

­xk
1

­P
­xi

5 x
­2Zs

i

­xk­xk
, i 5 1, 2, s 5 6, (2)

found that the Chebyshev collocation methods give lower
errors when sharp gradients or discontinuous derivatives
occur near the boundaries of the spatial domain D than ­2P

­xk­xk
5 2

­Z1
k

­xm

­Z2
m

­xk
, (3)

when they are near the center. This implies that a
Chebyshev pseudospectral method can be advantageous

where Zs and P are the dimensionless Elsasser variablesin a multidomain technique to describe continuous solu-
and total pressure, respectively,tions with localized sharp gradients, provided that these

fast variation regions are near a boundary (internal or
not) of some subdomain D[a]. Zs

i 5
vi

cA
1 s

Bi

B0
, i 5 1, 2, s 5 6; P 5

p 1 B2/8f
r0c2

A
.

In this paper we consider a problem in which a boundary
layer of small but finite amplitude is present, namely, the

In these equations v represents the velocity of the fluid, Bnonlinear development of the tearing instability in incom-
is the magnetic field, p is the gas pressure, and cA 5pressible magnetohydrodynamics (MHD). In this problem
B0/(4fr0)1/2 is the Alfvén velocity, r0 being the mass densitya narrow region of strong localized gradients spontane-
which keeps constant and uniform, and B0 a characteristicously forms around a well-determined plane surface (neu-
value for the magnetic field. The dimensionless space–timetral sheet) inside the spatial domain. These gradients are
variables are x1 ; x 5 X/a, x2 ; y 5 Y/a, and t 5directed perpendicular to the neutral sheet. Based on the
T(cA/a), where a represents some characteristic length ofresults of Solomonoff and Turkel [3], one can expect that
the problem. Lower indices identify the vector cartesiana substantial improvement of the spatial resolution can be
components (e.g., Z1 ; Zx , Z2 ; Zy) and summation overachieved if an internal boundary between two subdomains
the lower dummy indices is hereinafter understood. Fi-is located at the neutral sheet, and Chebyshev expansions
nally, it has been assumed that n 5 hc2/(4f) (with n theare carried out in both subdomains in the direction parallel
kinematic viscosity, h the resistivity, and c the velocity ofto the gradients (i.e., perpendicular to the neutral sheet).
the light) and the dissipation coefficient x 5 n/(acA) 5In fact, in such a case the gradients turn out to be located
hc2/(4facA) has been defined. The space domain is givenclose to the boundary of the Chebyshev meshes; this is the
by the rectangleconfiguration in which a Chebyshev expansion gives the

lowest errors [3].
D 5 h(x, y) : x [ [2l, l], y [ [0, fRl]j,In order to give a quantitative measure of the advantages

of applying such a pseudospectral Chebyhev, multidomain
technique to the solution of a boundary-layer problem we where R is a parameter which determine the aspect ratio

and l gives a measure of the domain width in normal-compared in details the results of this method with those
obtained by a single domain technique. In the latter case, ized units.

The initial condition will be chosen in such a way thatthe boundary layer is located at the center of the spatial
domain, i.e., far from the boundaries of the Chebyshev a boundary layer forms along the line x 5 0. The location

of this boundary layer does not change in time. Then, anmesh. We show that the multidomain Chebyshev method
gives a good accuracy with a number of Chebyshev poly- enhanced spatial resolution is required close to the line
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x 5 0, where the largest gradients develop. This is achieved
by dividing the spatial domain D in two subdomains, with

­Zs[L]
i

­x
(0, y, t) 5

­Zs[R]
i

­x
(0, y, t),

the internal boundary located at the line x 5 0. Pseudospec-
tral Chebyshev expansions are carried out in both subdo- y [ [0, fRl], t $ 0, i 5 1, 2, s 5 6, (7b)
mains in the x-direction, i.e., parallel to such gradients.

P[L](0, y, t) 5 P[R](0, y, t),The results of this method will be compared with those
obtained using a single-domain method. In this latter case, y [ [0, fRl], t $ 0, (7c)
a single pseudospectral Chebyshev expansion is performed
in the x-direction and the location of the boundary layer ­P[L]

­x
(0, y, t) 5

­P[R]

­x
(0, y, t),

corresponds to the center of the Chebyshev mesh. It will
be shown that the double-domain technique improves the y [ [0, fRl], t $ 0. (7d)
accuracy of the numerical solution, in accordance with the
results of Solomonoff and Turkel [3]. These conditions will be discussed below, with regard to

Concerning the boundary conditions, periodicity condi- the regularity properties of the physical solution.
tions are imposed on the boundaries y 5 0 and y 5 fRl, In the double-domain method, Eqs. (2) and (3) are nu-
i.e., on those boundaries crossed by the boundary layer. merically solved using a pseudospectral method in both
The following free-slip conditions are imposed on the other D[L] and D[R]; any quantity f [a](x, y, t) in the subdomain D[a]

pair of boundaries: at a given time t is approximated as a linear combination of
a finite number of functions,

­Zs
y

­x
5 0, s 5 6, at x 5 6l, t $ 0,

f [a](x, y, t) 5 OM21

m50
ON
n50

a[a]
nm(t) f[a]

nm(x, y), (8)
­P
­x

5 0, at x 5 2l, t $ 0, (4)
where

P 5 P0, at x 5 l, t $ 0,
f[L]

nm(x, y) 5 Tn(2x/l 1 1) e2imy/(Rl), (x, y) [ D[L],
(9)t 5 0 being the initial time, along with the diver-

f[R]
nm(x, y) 5 Tn(2x/l 2 1) e2imy/(Rl), (x, y) [ D[R],genceless conditions

Tn(j), j [ [21, 1], is the Chebyshev polynomial of degree
n and i is the imaginary unity. The spatial grids of the­Zs

x

­x
5 2

­Zs
y

­y
, s 5 6, at x 5 6l, t $ 0. (5)

collocation points used in the pseudospectral expansions
are the sets

If the divergence of Zs is vanishing at the initial time
S[a] 5 h(x [a]

i , y [a]
j ), i 5 0, ..., N, j 5 0, ..., M 2 1, a 5 L, Rj,

­Zs
k

­xk
5 0, s 5 6 for (x, y) [ D at t 5 0, (6) where

x [L]
i 5 l [2cos(fi/N) 2 1]/2,Eqs. (2) and (3) with the boundary condition (5) ensure

x [R]
i 5 l [2cos(fi/N) 1 1]/2 (10)that the fields Zs remain divergenceless for any time t $ 0.

y [L]
j 5 y [R]

j 5 fRlj/M.The problem will be solved using both a double-domain
technique and a single-domain technique. In the former

These correspond to the standard collocation points usedcase the domain D is divided in two subdomains (left and
in the Fourier and Chebyshev pseudospectral expansions,right) D 5 D[L] < D[R], with D[L] 5 [2l, 0] 3 [0, fRl]
respectively. We chose to use the standard collocationand D[R] 5 [0, l] 3 [0, fRl]; hereinafter we will indicate
points because of the following reasons: Solomonoff andquantities relative to these two subdomains by the upper
Turkel [3] considered the Chebyshev pseudospectralindices [L] and [R], respectively. Extra boundary conditions
expansion of functions with large gradients near the bound-must be given on the internal boundary x 5 0. In particular,
aries and compared the accuracy when standard colloca-we impose the following matching conditions:
tion points, or uniformly spaced points are respectively
used. They found that the former choice is preferable,Zs[L]

i (0, y, t) 5 Zs[R]
i (0, y, t),

since in such a case lower absolute errors are obtained.
Moreover, in the calculation of the expansion coefficientsy [ [0, fRl], t $ 0, i 5 1, 2, s 5 6, (7a)
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with standard collocation points fast Fourier transform Zs(n11)
i 2 Zs(n)

i

Dt
1 Z2s(*)

k
­Zs(*)

i

­xk
1

­P(*)

­xi
2 Dtc2

k
­2Zs(n11)

i

­2xk(FFT) algorithms can be employed; this transformation
technique is faster than the matrix multiplication if the
order N of the Chebyshev transform is sufficiently high 5 2 Dtc2

k
­2Zs(n)

i

­2xk
1

x

2
­2

­xk­xk
[Zs(n11)

i 1 Zs(n)
i ], (15a)

(typically N * 100) [5].
In the single-domain technique the pseudospectral i 5 1, 2, s 5 6;

expansion of a quantity f (x, y, t) is
­2P(n11)

­xk­xk
5 2

­Z1(n11)
k

­xm

­Z2(n11)
m

­xk
(15b)

f (x, y, t) 5 OM21

m50
O2N

n50
anm(t) fnm(x, y), (11)

and imposing the boundary conditions (4) and (5) and the
matching conditions (7) to Zs(n11)

i and P(n11).
where The whole scheme (14)–(15) depends on the numerical

parameters u, c1 , and c2 , as well as on Dt. These parameters
fnm(x, y) 5 Tn(x/l)e2imy/(Rl), (x, y) [ D. (12) must be tuned in order to have a good accuracy and to

avoid numerical instabilities. Both Eqs. (14) and (15) are
implicit, because it is necessary to invert some differentialThe spatial grid in this case is S 5 h(xi , yj), i 5 0, ..., 2N,
operator in order to calculate (Zs(*), P(*)) and (Zs(n11),j 5 0, ..., M 2 1j, where
P(n11)), respectively.

Concerning the matching conditions (7), from the theoryxi 5 2l cos[fi/(2N)], yj 5 fRlj/M. (13)
of the tearing instability [4] we know that in the physical
problem the solution is continuous in the whole spatial

The Chebyshev expansion is performed using N 1 1 domain up to the second-order space derivatives, although
polynomials per each of the two subdomains in the double- strong gradients form at the boundary layer. The matching
domain case (see Eq. (8)), while 2N 1 1 polynomials are conditions (7) applied to the time-discretized equations
employed in the single-domain case (Eq. (11)). Then, the (14)–(15) ensure all the quantities, up to the second-order
total number of polynomials in the two cases is almost the space derivatives, are continuous across the boundary x 5
same and this fact makes clearer the comparison between 0 at each time step, provided that this condition is satisfied
the results obtained by the two different methods. at the initial time. We show this point inductively; let us

The time dependence in Eqs. (2) and (3) is treated by assume that Zs(0) and P(0) (at the initial time t 5 0), as
a second-order numerical scheme. In particular, a semi- well as Zs(n) and P(n) (at a given time tn), along with their
implicit method is used [6, 7] in order to avoid the con- x and y derivatives up to the second-order, are continuous
straint of the Courant condition, which would become very across the internal boundary x 5 0. The matching condi-
severe in consequence of the high density of collocation tions (7) applied at the time t* ensure that: (i) all the
points near the boundaries at x 5 6l and x 5 0 [8]. Given quantities are continuous across x 5 0; (ii) their first-order
the solution (Zs(n), P(n)) at the time tn 5 n Dt (Dt being x-derivatives are continuous across x 5 0; (iii) in conse-
the time step amplitude), the solution (Zs(*), P(*)) at an quence of the point (i), their y-derivatives of any order
intermediate time t* 5 tn 1 uDt, As , u # 1, is first calculated are continuous across x 5 0. Since, from Eqs. (14), the
using the equations second order x-derivatives at t 5 t* are continuous func-

tions of the above quantities, we conclude that Zs(*) and
P(*) are continuous across the internal boundary up to theZs(*)

i 2 Zs(n)
i

uDt
1 Z2s(n)

k
­Zs(n)

i

­xk
1

­P(n)

­xi
(14a)

second-order derivatives. Using a similar argument on Eqs.
(15) with the same matching conditions, it is shown that

5
x

2
­2

­xk­xk
[Zs(*)

i 1 Zs(n)
i ], i 5 1, 2, s 5 6,

also Zs(n11) and P(n11) have these same regularity prop-
erties.

On the other hand, the regularity of the first- and second-­2P(*)

­xk­xk
5 2

­Z1(*)
k

­xm

­Z2(*)
m

­xk
(14b)

order derivatives is necessary in order to ensure the conti-
nuity across x 5 0 of the solutions. In fact, if, for instance,
the derivative ­2Z(n)

i /­x2 were discontinuous at x 5 0, thisand imposing the boundary conditions (4) and (5) and the
matching conditions (7) to Zs(*)

i and P(*). The upper index would produce a discontinuity in Z(n11)
i at the next time

step. Moreover, the induction argument points out thatin parentheses identifies the time step. This solution is
used to evaluate both the nonlinear term and the pressure the initial conditions of all the quantities must be chosen

as at least C 2-class functions on the whole space domain.gradient term in Eq. (2); then the solution at the time tn11

is calculated using the equations Finally, it is worth noting that the above regularity prop-
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erties of the solutions are kept by the time scheme (14)– subdomain; we write the solutions f̂ [a](x, m) of the problem
(16)–(17) in each subdomain as a linear combination of(15) because the scheme is implicit with respect to the

second-order derivative terms. On the contrary, using an two functions,
explicit time scheme, the continuity across the internal
boundary of the second-order x-derivatives would not be f̂ [a](x, m) 5 v̂[a](x, m) 1 lm ŵ[a](x, m),

(18)ensured, and it should be explicitly added to the other
m 5 0, ..., M 2 1, a 5 L, R,matching conditions (7).

Equations (14) and (15) are transformed in the spectral
where lm is an appropriate constant which is defined byspace. Let us consider first the double-domain case. In the
Eq. (21) and v̂[a](x, m) and ŵ[a](x, m) are the guess andfollowing we will indicate by f̂ [a](x, m) the mth coefficient of
the correction solutions, respectively. The former is thethe Fourier expansion of a quantity f [a](x, y) at a given time:
solution of the problem

f [a](x, y) 5 OM21

m50
f̂ [a](x, m) e2imy/(Rl). F d2

dx2 2 k 2(m)G v̂[a](x, m) 5 Ĝ[a](x, m)

l[a][v̂[a](x, m)] 5 b̂[a](m)

v̂[a](0, m) 5 b̂guess(m)
6,

(19a)

Equations (14) and (15) are written in the Fourier space,
(19b)

(19c)for the subdomains D[L] and D[R] separately. All these
equations can be set in the following general form, along m 5 0, ..., M 2 1, a 5 L, R,
with their boundary conditions,

where b̂guess(m) represents a guess value for the solution
f̂ [a](x, m) at the internal boundary x 5 0. The solution
ŵ[a](x, m) is determined byF d2

dx2 2 k2(m)G f̂ [a](x, m) 5 Ĝ [a](x, m)

, [a][f̂ [a](x, m)] 5 b̂ [a](m) 6,
(16a)

m 5 0, ..., M 2 1, a 5 L, R;

(16b) F d2

dx2 2 k 2(m)G ŵ[a](x, m) 5 0

l[a][ŵ[a](x, m)] 5 0

ŵ[a](0, m) 5 1
6,

(20a)

and the matching conditions,
(20b)

(20c)

m 5 0, ..., M 2 1, a 5 L, R.

The correction solution ŵ[a](x, m) does not depend on the
f̂ [L](0, m) 5 f̂ [R](0, m)

df̂ [L]

dx
(0, m) 5

df̂ [R]

dx
(0, m)6, m 5 0, ..., M 2 1;

(17a)

time step, so it is calculated only once, at the beginning of(17b)
the time advancing procedure, by solving the problems
(20).

It can be easily verified that the linear combination (18)
where f̂ [a](x, m) indicates the Fourier coefficients of gives the solution of the problem (16)–(17), which is
Z[a](p)

i , Z[a](n11)
i , P[a](p), or P[a](n11); Ĝ[a](x, m) is the RHS, unique. In particular, the matching condition (17b) is satis-

which depends on quantities relative to previous time steps; fied by the following choice of the parameter lm :
l[L] and l[R] are the linear operators which give the boundary
conditions (4) and (5) in the Fourier space at the bound-
aries x 5 2l and x 5 l, respectively; b̂[a](m) are the corre-
sponding RHS; k2(m) are positive constants. Note that lm 5 2

dv̂[R]

dx
(0, m) 2

dv̂[L]

dx
(0, m)

dŵ[R]

dx
(0, m) 2

dŵ[L]

dx
(0, m)

. (21)
the solution of the problems (16)–(17) can be carried out
independently for each Fourier harmonic; i.e., in the Fou-
rier space we have to solve M decoupled problems.

For a given Fourier harmonic, the Eqs. (16a) can be The guess solution v̂[a](x, m) is continuous on the whole
domain hx [ [2l, l]j, but its first derivative can be discontin-considered as two distinct problems, each relative to one

subdomain, which are coupled by the matching conditions uous at x 5 0. The parameter lm is proportional to the
jump in the first derivative of v̂[a](x, m). This discontinuity(17a), (17b). These equations have been treated using an

influence matrix method (see, e.g., Canuto et al. [9]) which is eliminated by adding the correction solution lmŵ[a]

(x, m). Actually, the term lmŵ[a](x, m) has also a disconti-allows us to decouple the two problems relative to each
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nuity in the first derivative at x 5 0 which exactly smooths Df̂ [a] > Dt/tm , (27)
out the discontinuity of dv̂[a](x, m)/dx.

The guess solutions v̂[a](x, m) depend on the quantities where
b̂guess(m). These are free parameters which can in principle
be chosen in an arbitrary way, since for any choice of

tm 5
i f̂ [a](x, m)iy

u(­f̂ [a]/­t) (0, m)u
b̂guess(m) ; v̂[a](0, m) the corresponding guess solutions
v̂[a](x, m) can be corrected by adding the appropriate cor-
rection term lmŵ[a](x, m). However, in order to avoid too

represents a characteristic evolution time of the solutionlarge roundoff errors in the linear combination (18), the
f̂ [a] at x 5 0. In conclusion, using the boundary conditionguess solutions v̂[a](x, m) should not be too far from the
(26), condition (23) is satisfied for sufficiently small valuesfinal solutions f̂ [a](x, m). The amount of the correction can
of Dt, namely,be evaluated defining the following quantities

Dt ! min htm , m 5 0, ..., M 2 1j.
D f̂ [a](m) ;

i f̂ [a](x, m) 2 v̂[a](x, m)iy

i f̂ [a](x, m)iy
, (22)

In the case of the single-domain technique, Eqs. (16)–
(17) are replaced by the equations

where, as usual, ig(x)iy 5 sup hg(x), x [ [2l, l ]j. In particu-
lar, we will require that

F d2

dx2 2 k2(m)G f̂ (x, m) 5 Ĝ(x, m) (28a)
D f̂ [a](m) ! 1, m 5 0, ..., M 2 1, a 5 L, R. (23)

l[L][ f̂ (x, m)] 5 b̂[L](m), m 5 0, ..., M 2 1,
In the Appendix it is shown that iŵ[a](x, m) iy 5 1; then,

(28b)from Eq. (18) it follows that
l[R][ f̂ (x, m)] 5 b̂[R](m) (28c)

D f̂ [a](m) 5 ulmu/i f̂ [a](x, m)iy ; (24)
which are solved by a Chebyshev pseudospectral tech-
nique, with the standard spatial mesh given by Eq. (13).i.e., the correction is proportional to ulmu. Evaluating Eq.
The method is the same as that employed to solve the(18) at x 5 0 and taking into account that ŵ[a](0, m) 5 1,
problem (19) or (20). Since in the single-domain case thewe find
order of the Chebyshev transforms is 2N, the solution of
Eqs. (28a), (28b), (28c) requires to solve a (2N 1 1) 3lm 5 f̂ [a](0, m) 2 v̂[a](0, m) 5 f̂ [a](0, m) 2 b̂guess(m). (25)
(2N 1 1) linear system.

Thus, in order to have small values for the correction
parameters D f̂ [a](m) we have to choose the trial boundary

3. NUMERICAL RESULTScondition b̂guess(m) sufficiently close to f̂ [a](0, m). In partic-
ular, at any time step we used the boundary condition The tearing instability represents the physical problem

which will be used as a test for the numerical technique
b̂guess 5 f̂ [a],(n21)(0, m), (26) described in the previous section. Since the first work

by Furth et al. [4], the tearing instability has received a
lot of attention in plasma physics research. It developswhere the RHS of Eq. (26) indicates the value of f̂ [a](0,
in a magnetofluid for configurations in which some com-m) at the previous time step. With this choice of the trial
ponent of the magnetic field vanishes on a given surfaceboundary condition the parameters lm are quantities of
(neutral surface). A small but finite value of the resistivityorder Dt,
h is also required, in order to allow changes in the
magnetic lines topology. In particular, we will consider

lm 5
­f̂ [a]

­t
(0, m) e Dt 1 O(Dt2), the case of a plane sheet pinch, where the equilibrium

configuration is given by a vanishing velocity veq 5 0
and the magnetic field

where e 5 u when the solution is calculated at the interme-
diate time t* or e 5 1 when the solution is calculated at
the time tn11 . The correction Df̂ [a] becomes, to the lowest Beq 5 B0FtghSX

aD1 b SX
aDG ey , (29)

order in Dt,
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where B0 gives the magnitude of the magnetic field, a is the continuity of
the shear length, ey is the unity vector along the Y-direction
of a cartesian frame of reference, and b is a constant. The fs

R,pert(x),
d fs

R,pert

dx
(x),

d2 fs
R,pert

dx2 (x),
d3 fs

R,pert

dx3 (x) at x 5 0,
second term in the expression (29) allows Beq to satisfy
the boundary condition (4). For this equilibrium structure (32)
the neutral surface is represented by the plane X 5 0. At
this location a boundary layer develops in consequence of the continuity of
the tearing instability. In this layer the velocity and the
magnetic field are continuous but they present sharp gradi- fs

I,pert(x),
d fs

I,pert

dx
(x),

d2 fs
I,pert

dx2 (x),
d3 fs

I,pert

dx3 (x) at x 5 0.
ents in the direction of the X-axis, i.e., perpendicularly to
the neutral surface. During the growth of the unstable (33)
modes, these gradients remain localized near the neutral
surface of the equilibrium structure. The thickness of the

The functions fs
R,pert(x) and fs

I,pert(x) have been deter-boundary layer depends on the resistivity h, in that it is
mined, giving their Chebyshev expansions. The conditionssmaller for lower values of h.
(31)–(33) represent constraints which must be fulfilled byBecause of these features, a multidomain technique with
such expansions; they have been used to determine a num-Chebyshev expansions is well suited to give an accurate
ber of Chebyshev coefficients as functions of the remainingnumerical solution of this problem. In this section we pre-
ones. The latter have been chosen so to obtain exponen-sent the results of some simulations of the tearing instabil-
tially decaying spectra. This technique allowed us to buildity. In particular, the results obtained using the double-
up an initial condition which is very smooth and, at thedomain Chebyshev technique will be compared with those
same time, which satisfies all the boundary and matchingobtained using the single-domain technique. In order to
conditions.excite the instability, at the initial time t 5 0 a small ampli-

The amplitude of the initial perturbation has been cho-tude random perturbation is superposed on the equilibrium
sen so that the perturbation energy to the equilibriummagnetic field Beq (Eq. (29)). In particular, the initial condi-
structure energy ratio is a small quantity. In particular,tion has the form
indicating such a ratio by

Zs(x, y, t0) 5 Zs
eq(x) 1 Zs

pert(x, y), s 5 6, (30)
« 5

1
4E0

E
D

[Z1
2

pert(x, y) 1 Z2
2

pert(x, y)] dx dy,

where
where

Zs
eq(x) 5 s Beq(x)

E0 5
1
4
E

D
[Z1

2

eq(x, y) 1 Z2
2

eq(x, y)] dx dy (34)Zs
pert(x, y) 5 curl h[fs

R,pert(x) cos(2y/Rl)

2 fs
I,pert(x) sin(2y/Rl)] ezj

is the equilibrium structure initial energy, we chose the
perturbation amplitude such that « 5 1027, i.e., much lessand ez is the vector unity perpendicular to the simulation
than the equilibrium magnetic field amplitude.plane and fs

R,pert(x) and fs
I,pert(x) represent the initial small

The values of the parameters used in the runs are:amplitude perturbation of the vector potential. The initial
x21 5 2 3 103, R 5 Kd, l 5 10. With this choice the Fouriercondition (30) corresponds to the excitation of the m 5 0
harmonic m 5 1 turns out to be comprised in the unstableand m 5 1 Fourier harmonics of Zs. Moreover, the form
wavelengths range, close to the most unstable wavelength(30) ensures that the initial condition is divergenceless.
[10–12]. Moreover, the spatial domain width (2l in ourThe functions fs

R,pert(x) and fs
I,pert(x) must be chosen so

units) is much larger than the width of the equilibriumas to satisfy the boundary conditions (4); i.e., we re-
magnetic field shear (equal to 1 in our units); then, thequired that
boundary condition at x 5 6l do not sensibly affect the
evolution of the instability.

In order to study the capability of the pseudospectrald2 fs
R,pert

dx2 5 0,
d2 fs

I,pert

dx2 5 0 (31)
Chebyshev expansion to describe the formation of the
boundary layer, different runs have been performed using
a different number of Chebyshev polynomials. In particu-at the boundaries x 5 6l. Moreover, when the double-

domain Chebyshev technique is used the matching condi- lar, we considered the cases N 5 32, N 5 64, and N 5
128, corresponding respectively to 33 1 33, 65 1 65, andtions (7a)–(7d) are to be satisfied, which implies
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129 1 129 Chebyshev polynomials in the double-domain is still well described with 129 and 257 Chebyshev polyno-
mials, but this is not the case when spectral expansionscase (see Eq. (8)), and to 65, 129, and 257 Chebyshev

polynomials in the single domain case (see Eq. (11)). Al- with 65 polynomials are used. Actually, in this latter case
the exponential growth of the kinetic energy appears tothough only the m 5 0 and m 5 1 Fourier harmonics have

been initially excited, nonlinear couplings transfer energy be sensibly slower than in all the other cases. In order to
give a quantitative measure, we considered the time inter-to higher wavenumbers. However, these couplings are

rather weak because of the low energy level in the pertur- val 600 # t # 1000, corresponding to the exponential
growth stage. During this time interval the behavior of thebation. So the Fourier spectrum of the solution is very

steep and a small number of Fourier harmonics can be kinetic energy Ekin
1 (t) can be approximated by an exponen-

tial functionused. In particular, in all the runs we used M 5 32 colloca-
tion points in the Fourier grid. The values of the other

Ekin
1 (t) > E ect (36)numerical parameters are Dt 5 4, u 5 0.505, c1 5 0.025,

c2 5 1. We verified that with these values the scheme is
numerically stable, in accordance with the results by with E and c constant. The value of the growth rate c has

been determined fitting a linear function of the time onHarned and Schnack [7].
Starting from the above smooth initial condition, for ln[Ekin

1 (t)]. We obtained c > 3.41 3 1023 in the single-
domain case with 65 Chebyshev polynomials, while c >increasing time the m 5 1 harmonic evolves giving origin

to the unstable eigenmode which corresponds to that wave- 4.23 3 1023 in all the other cases. This indicates that 65
polynomials in the single-domain case are not sufficient tolength and to the given boundary conditions. In Figs. 1a

and 1b the normalized kinetic energy Ekin
1 (t) of the m 5 1 accurately describe the time evolution of the energy in

the perturbation.Fourier harmonic is plotted versus time, the normalized
kinetic energy of the mth Fourier harmonic being de- The profiles of the real part of the m 5 1 Fourier

harmonic of the velocity and of the magnetic field, asfined as
functions of the x-variable, are shown in Figs. 2 and 3
at the time t 5 1000, i.e., during the exponential growthEkin

m (t) 5
1

8E0
El

2l
uẐ1 (x, m, t) 1 Ẑ2 (x, m, t)u2 dx. (35)

stage. It can be seen that the solution has strong space
variations around x 5 0, as predicted by the linear theory
[4, 10, 11]. The solutions obtained using the double-The time evolution of the normalized kinetic energy

Ekin
1 (t) is plotted both in the double-domain (Fig. 1a) and domain Chebyshev technique (Fig. 2) with 33 1 33, 65

1 65, and 129 1 129 Chebyshev polynomials are veryin the single-domain (Fig. 1b) case, using different numbers
of Chebyshev polynomials in the spectral expansions of close to one another, so to appear superposed. Only

the x-component of the velocity perturbation (Fig. 2a)the quantities.
The main features of the time evolution can be summa- calculated with 33 1 33 polynomials presents some differ-

ence near the boundaries with respect to the profilesrized as follows; during about the first 600 time units the
kinetic energy grows in time, but relevant oscillations are calculated using a higher number of polynomials. On

the contrary, the boundary layer is well described alsosuperposed on this trend. These oscillations are gradually
damped. This stage corresponds to the formation of the using 33 1 33 polynomials. Then, the resolution which

is obtained using 66 polynomials with the double-domainunstable eigenmode, which is characterized by strong gra-
dients in the x-direction, localized around the line x 5 0. technique is sufficient to describe the structure of the

boundary layer associated with the tearing instability.From the time t P 600 on, the kinetic energy of the m 5
1 harmonic grows exponentially up to the time t P 1000. The corresponding profiles obtained using the single-

domain technique are similar to those of the double-do-This stage corresponds to the exponential growth of the
unstable eigenmode, predicted by the linear theory of the main case, but not exactly the same. Actually, since the

initial condition is different from that used in the double-tearing instability [4].
In the double-domain case (Fig. 1a) the plots corre- domain case, the excited eigenmode has a different phase

along the periodicity ( y) direction, so the profiles of thesponding to 33 1 33, 65 1 65, and 129 1 129 Chebyshev
polynomials are, in practice, superposed. Then, if the dou- real (and imaginary) part have a different amplitude with

respect to the double domain case. Considering the Figs.ble-domain Chebyshev technique is used, the evolution of
the kinetic energy in the perturbation is well described also 3 it is seen that the profiles obtained using 129 or 257

Chebyshev polynomials are superposed. On the contrary,when a relatively low number of Chebyshev polynomials is
employed, namely a total number of 66 polynomial in the the solution is sensibly different when 65 polynomials are

employed: the amplitude of the perturbation is lower, inwhole domain.
A different behavior is observed when the single-domain accordance with the results shown in Fig. 1b. Moreover,

relevant short-scale oscillations are present in the y-compo-technique is used (Fig. 1b). In particular, the time evolution
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FIG. 1. The kinetic energy associated to the m 5 1 Fourier harmonic, as a function of the time. Using the double domain technique the plots
corresponding to 33 1 33, 65 1 65, and 129 1 129 Chebyshev polynomials are superposed (a). Using the single domain technique, this holds when
129 or 257 polynomials are used, while a different behavior is found with 65 polynomials (b).

nent velocity perturbation profile (Fig. 3b); the amplitude
zs

i (x, t) 5
Ẑs

i (x, 1, t)

FEl

2l
uẐs

i (x9, 1, t)u2 dx9G1/2
(37)of such oscillations increases with the time. This phenome-

non indicates that when 65 polynomials are used the Cheb-
yshev expansion is unable to correctly describe the strong
gradients which forms around x 5 0.

which approximates the unstable eigenmode. TheIn order to obtain further information on the accuracy
Chebyshev spectrum zs

i,n(t) of the mode zs
i (x, t) is de-of the solution we calculated the Chebyshev spectrum

fined byof the excited unstable eigenmode, which contains the
boundary layer. This eigenmode corresponds to the
m 5 1 Fourier harmonic of Zs. Since this quantity grows

zs
i (x, t) 5 ON

n50
zs

i,n(t) Tn(x/l), x [ [2l, l], i 5 x, y, s 5 6,in time during the development of the instability, it has
been normalized using its L2-norm. Then, we define the
mode zs

i (x, t) by (38)
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FIG. 2. The profiles, as functions of x, of the real part of the m 5 1 Fourier harmonic of the velocity x-component (a) and y-component (b)
and of the magnetic field x-component (c) and y-component (d) at the time t 5 1000, obtained using the double-domain technique with 33 1 33,
65 1 65, and 129 1 129 Chebyshev polynomials.

in the single-domain case. In the double domain case we using different values of N. The same quantity is plotted
in Figs. 5a and 5b, in the single-domain case. The timerepresent only the Chebyshev spectra relative to the right
t 5 1000 approximately corresponds to the end of thesubdomain D[R]; those relative to the left subdomain D[L]

exponential growth stage, while t 5 2000 is during theare very similar in consequence of the symmetry properties
instability saturation (see Figs. 1). Comparing the resultsof the unstable eigenmode [4, 11]. In this case we define
shown in Figs. 4 and 5 it is seen that the Chebyshev spectrathe spectrum zs

i,n(t) by the relation
uz1

x,n(t)u, obtained using the double-domain technique are
much steeper than those obtained by the single-domain

zs
i (x, t) 5 ON

n50
zs

i,n(t) Tn(2x/l 2 1),
(39)

technique. Then, using the double-domain technique a
small number of Chebyshev polynomials is required to
represent the solution with a boundary layer at x 5 0.x [ [0, l], i 5 x, y, s 5 6,
On the contrary, using the single-domain technique the
contribution of high-order Chebyshev polynomials in thewhere
spectral expansion of the boundary layer solution is much
more relevant.

zs
i (x, t) 5

Ẑs
i (x, 1, t)

FEl

0
uẐs

i (x9, 1, t)u2 dx9G1/2
, x [ [0, l]. In consequence of this, representing the solution with

the same number of Chebyshev polynomials, much lower
truncation errors are obtained using the double-domain
than the single-domain technique. An order of magnitude

In Figs. 4a and 4b the spectrum uz1
x,n(t)u is plotted for t 5 evaluation of the truncation error in the mode zs

i (x, t) can
be obtained in the following way. Let us consider first the1000 and t 5 2000, respectively, in the double-domain case,
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FIG. 3. The same profiles as those of Fig. 2, obtained using the single-domain technique with 65, 129, and 257 Chebyshev polynomials.

double-domain case. We indicate by z̃s
i (x, t) the representa- Looking at the spectra shown in Figs. 4a and 4b, it can be

seen that the value of uzs
i,n(t)u for a given n does not undergotion of the mode zs

i (x, t) obtained using an infinite number
of Chebyshev polynomials. Its spectral expansion is indi- important changes when the order N of the Chebyshev

expansion is increased. This holds also for the complexcated by
coefficients zs

i,n(t). Then, we can assume that

z̃s
i (x, t) 5 Oy

n50
z̃s

i,n(t) Tn S2x
l

2 1D. (40)
zs

i,n(t) > z̃s
i,n(t), n 5 0, ..., N. (42)

The sequence huz̃s
i,n(t)u, n 5 0, 1, ...j goes to zero with a rate The truncation error is then given by

which depends on the regularity properties of z̃s
i (x, t). If,

for instance, z̃s
i (x, t) is of C2p-class with respect to the x-

dNzs
i (t) > I Oy

n5N11
z̃s

i,n(t) Tn S2x
l

2 1DI
y

(43)variable, then the inequality uz̃s
i,n(t)u , 1/n2p holds for suffi-

ciently large n, for any time t [1]. This ensures that the series

# Oy
n5N11

uz̃s
i,n(t)u,Oy

n50
uz̃s

i,n(t)u

where we used the relation iTn(x)iy 5 1, n 5 0, 1, .... The
converges to a finite value. We define the truncation error sum in the RHS of the inequality (43) gives an upper bound
at the Nth term, in the mode zs

i (x, t) by of the truncation error. In our runs we considered the cases
with N 5 32, N 5 64, and N 5 128. Since the sequence

dNzs
i (t) 5 izs

i (x, t) 2 z̃s
i (x, t)iy . (41) huz̃s

i,n(t)u, n 5 0, 1, ...j goes to zero very rapidly with increas-
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FIG. 4. The spectrum uz1
x,n(t)u of the normalized mode z1

x (x, t) plotted as a function of n at the time t 5 1000 (a) and t 5 2000 (b), using 33 1

33, 65 1 65, and 129 1 129 Chebyshev polynomials with the double-domain technique.

ing n (Figs. 4a and 4b), in the cases N 5 32 and N 5 64 the terms of the sum (45) are those obtained by the numeri-
cal procedure using Chebyshev expansions with N 5 128.a good estimation of the series at the RHS of (43) can be
The quantity DNzs

i (t) represents an estimation of an upperobtained, truncating such a series at the term correspond-
bound for the truncation error of the mode zs

i (x, t) in theing to n 5 128,
cases in which the double-domain technique has been used
with 33 1 33 or 65 1 65 polynomials. This quantity is

dNzs
i (t) # O128

n5N11
uz̃s

i,n(t)u > DNzs
i (t) with N 5 32 or N 5 64, plotted in Fig. 6 as a function of the time, relative to the

component z1
x (x, t). For instance, at the time t 5 1000 the

(44) truncation error of the mode z1
x (x, t) is less than 3 3 1025

when 33 1 33 polynomials are used, while it is less than
where 2 3 10210 using 65 1 65 polynomials. These values are

actually small because the truncation error is evaluated for
the normalized solution (see Eq. (37)), i.e., for a quantityDNzs

i (t) 5 O128

n5N11
uzs

i,n(t)u, (45)
whose L2-norm is equal to 1. For increasing time the trun-
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FIG. 5. The same as in Fig. 4, using 65, 129, and 257 Chebyshev polynomials with the single-domain technique.

cation error DNz1
x (t) increases in consequence of nonlinear

DNzs
i (t) 5 O256

n5N11
uzs

i,n(t)u with N 5 64 or N 5 128, (46)effects which transfer energy towards the higher-order co-
efficients of the spectral expansion.

A similar procedure could be used to estimate the trun- but only during the first part of the runs, say for t # 1000.
This quantity is also plotted on Fig. 6 (thick lines). Compar-cation error for the single-domain runs. Indeed, from Figs.

5a and 5b it can be seen that, although at t 5 1000 the ing with the results obtained with the double-domain
Chebyshev technique, it can be seen that in this latter caserelation (42) is still relatively well satisfied (at least as an

order of magnitude estimation), this is no more true at the truncation error is orders of magnitude smaller than
that obtained using the single-domain technique with thet 5 2000. In fact, Fig. 5b shows that the high-n part of the

spectrum strongly changes when increasing the order of same number of Chebyshev polynomials.
This result is due to the fact that the strongest gradientsthe Chebyshev transform. Then, in the single-domain runs

we can assume as an upper limit for the truncation error in the solution are localized around the x 5 0, which corre-
sponds to the internal boundary of the double-domainthe quantity
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FIG. 6. The truncation error of the normalized mode x-component is plotted as a function of the time. The total number of the employed
Chebyshev polynomials is indicated. Thick lines refer to single-domain runs while thin lines refer to double-domain runs.

case. Then, the accuracy of the Chebyshev expansion is vanishing at the boundaries for any time t $ 0. Let us
discuss how the truncation errors affect the conservationmuch higher in this case, in accordance with the results of

Solomonoff and Turkel [3]. of the divergence in the numerical scheme. The truncation
in the representation of the fields Zs does not introduceThe pseudospectral method used to calculate the nonlin-

ear (products) terms in Eqs. (14) leads to aliasing errors any error in the evaluation of linear operators, such as
space derivatives. On the contrary, aliasing errors arise in[1, 13, 14]. These errors are more relevant during the last

part of the runs, when nonlinear effects play an important the calculation of nonlinear terms. Let us consider the
numerical scheme (14)–(15) for the truncated quantities;role in the instability saturation. Such errors are smaller

if the spectra of the quantities which are multiplied are taking the divergence of Eq. (14a) and using Eq. (15b)
evaluated at the time tn , we havesteeper; i.e., the aliasing errors are smaller when the trunca-

tion errors are smaller. This implies that lower aliasing
errors should be obtained with the double-domain tech-
nique. F1 2

u x Dt
2

­2

­xk ­xk
GS­Zs(p)

i

­xi
D

The effects of aliasing errors in the single-domain runs
can be observed in Figs. 5a and 5b; indeed, as already
observed, the high-n part of the spectrum changes when 5 F1 1

u x Dt
2

­2

­xk ­xk
GS­Zs(n)

i

­xi
D (47)

the order of the Chebyshev polynomials is increased. This
effect becomes more relevant with increasing time; actu-

2 u Dt FZ2s(n)
k

­

­xk
GS­Zs(n)

i

­xi
D1 «s,ally, the amplitude of the perturbation grows in time, so

the nonlinearities in the evolution equations (14) become
more important. The same effect is much less relevant in
the double-domain case (see Figs. 4a and 4b), even for where «s is the aliasing error which arises in the calculation

of the nonlinear terms. Even assuming that the truncatedt 5 2000. Then, the small truncation errors obtained with
the double-domain technique allow us to keep the aliasing field Zs(n) at time t 5 tn is divergenceless, ­Zs(n)

i /­xi 5 0,
the aliasing error «s acts as a source term for the field Zs(p)errors to a lower level; this is useful in particular during

the nonlinear stage of the instability. at time t* 5 tn 1 u Dt. A similar argument applied on
Eqs. (15a) and (14b) shows that aliasing errors generateA more quantitative evaluation of the effects of the

truncation errors can be obtained, considering the diver- divergence in the truncated fields Zs(n11). The time evolu-
tion of the divergence of Zs(n) then gives account of thegence of the fields Zs. The time evolution equations (2)–(3)

ensure that ­Zs
i /­xi 5 0 for t . 0, provided that: (i) the effects of the cumulation of the aliasing errors in the pseu-

dospectral numerical scheme. In Fig. 7 the quantitiesinitial condition is divergenceless and (ii) ­Zs
i /­xi is kept
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FIG. 7. The maximum divergences d1(t) and d2(t) are plotted as a function of the time. The total number of the employed Chebyshev polynomials
is indicated. Thick lines refer to single-domain runs while thin lines refer to double-domain runs. For all the cases d1(t) and d2(t) are almost equal,
so they appear superposed.

that the internal boundary between the two subdomains
ds(t) 5 max

(xi ,yj)[D
U­Zs

k

­xk
(xi , yj , t)U, s 5 6, (48) is located at the boundary-layer position, so that the strong

gradients associated to it are close to the boundary of
the Chebyshev mesh. The idea is based on the results by

are plotted as functions of the time, for the different runs Solomonoff and Turkel [3], who studied the properties of
performed using both the single-domain and the double- pseudospectral Chebyshev expansions in cases when sharp
domain Chebyshev technique. The maximum is calculated gradients are present. These authors found that lower er-
over all the points in the spatial grid. For any run it has rors result when these gradients are localized near the
been found that, at any time t, d1(t) is very close to d2(t), boundary of the Chebyshev domain than when they are
so these quantities appear superposed. From Fig. 7 it can near the center.
be seen that, using the same number of Chebyshev polyno- On the basis of such results, we have split the computa-
mials, much lower values of the maximum divergence are tional domain in two subdomains, the internal boundary
obtained with the double-domain technique than with the being along the line x 5 0, where the boundary layer is
single-domain one. This is in accordance with the fact that located. In each subdomain a Chebyshev expansion has
the double-domain method in the problem under study been performed with respect to the x-variable, i.e., in the
gives origin to much lower truncation errors. direction of the strongest gradients, while a Fourier expan-

sion has been used with respect to the y-variable. Standard
4. CONCLUSIONS collocation points have been used in the Chebyshev grid,

since, as shown by Solomonoff and Turkel [3], in such a
In this paper we have described the application of a case the errors are lower than when a uniform mesh is

pseudospectral Fourier–Chebyshev method to the solution used. The time scheme and the matching conditions at the
of a problem in which a boundary layer forms, namely the internal boundary ensure that all the space derivatives are
development of the tearing instability in a plane sheet continuous across the internal boundary, up to the second
pinch. In the considered two-dimensional configuration the order. Calculation of the numerical solution has been split
boundary layer is located along a straight line, where strong in two by an influence matrix technique [9], which allows
gradients in the direction perpendicular to such a line de- us to calculate the solution independently in each of the
velop. two subdomains. In this way two (N 1 1) 3 (N 1 1) linear

Our aim was to show that a better accuracy can be systems are solved at each time step and for any Fourier
obtained using a double-domain Chebyshev technique harmonic, instead of one 2(N 1 1) 3 2(N 1 1) linear

system.rather than a standard single-domain technique, provided
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The results obtained by the double-domain Chebyshev ig(x)iy 5 sup hg(x), x [ [2l, l]j. (A2)
technique have been compared with those obtained by a
single-domain technique. In this latter case, the boundary Since ŵ[R](x, m) 5 ŵ[L](2x, m), it is sufficient to prove
layer is located at the center of the Chebyshev mesh. The (A1) only for ŵ[R](x, m) in the interval hx [ [0, l]j. The
m 5 1 Fourier harmonic corresponds to the unstable eigen- solutions ŵ[a](x, m) fulfill the condition (20c),
mode in which the boundary layer forms. It has been found
that the Chebyshev spectrum of this harmonic at a given ŵ[a](0, m) 5 1. (A3)
time is much steeper when the double-domain method is
used than in the single-domain case. This implies that if Then, the relation (A1) is satisfied if the solutions ŵ[R](x,
the same number of Chebyshev polynomials is used with m), which are continuous in the interval [0, l], are also
the two techniques, much lower truncation errors are ob- monotonically nonincreasing in the same interval. We will
tained with the double-domain method. For instance, con- consider two cases:
sidering the quantity Zx , the truncation error obtained

(1) k(m) 5/ 0. In this case the general solution of Eq.using 65 1 65 Chebyshev polynomials with the double-
(20a) is given bydomain technique is smaller by a factor P106 with respect

to the truncation error obtained using 129 polynomials
ŵ[R](x, m) 5 c1 ek(m)x 1 c2 e2k(m)x, (A4)with the single-domain technique.

As a consequence, the double-domain Chebyshev tech-
where c1 and c2 are constants which are determined by thenique allows us to obtain an accurate solution with a rela-
boundary conditions. Let us indicate by xe the value of xtively low number of Chebyshev polynomials: in the con-
for which the derivative of the solution (A4) vanishes:sidered case we found that using 33 1 33 polynomials a

good accuracy is obtained in the numerical solution. On
the contrary, using 65 polynomials with the single-domain xe 5

1
2 k(m)

lg
c2

c1
. (A5)

technique a much worse result is obtained: strong oscilla-
tions are present in the space profiles of the solution and
the time evolution is sensibly changed; in particular, the If the boundary condition (16b) is given on the value of
instability growth rate is lowered. the solution

The pseudospectral method leads to aliasing errors in
the evaluation of the nonlinear terms in the equations. For f̂ [R](l, m) 5 b̂[R](m)
a given number of Chebyshev polynomials, such errors are
lower if the sequence of the spectral coefficients of the (this holds for the pressure, see Eq. (4)), then the boundary
solution goes to zero faster with increasing n. Since steeper conditions (20b), (20c) for ŵ[R](x, m) are
Chebyshev spectra are obtained with the double-domain
technique, smaller aliasing errors are obtained using such ŵ[R](l, m) 5 0,

(A6)a technique. Actually, the effects of the aliasing errors
ŵ[R](0, m) 5 1observed in the Chebyshev spectrum of the solution are

more relevant in the single-domain than in the double-
which givedomain cases. Another indicator of the aliasing errors is

the divergence of the fields Zs. In fact, this quantity must
keep vanishing in the exact solution; on the contrary, in c1 5 2

e2lk(m)

elk(m) 2 e2lk(m), c2 5
elk(m)

elk(m) 2 e2lk(m) .
the numerical solution it grows as a consequence of aliasing
errors. We found that the growth of the divergence is much

Equation (A5) has no solution, since the ratio c2/c1 isslower using the double-domain than the single-domain
negative, thus showing that ŵ[R](x, m) is monotonic in [0,technique. This is relevant, in particular, during the nonlin-
l]. Moreover, Eqs. (A6) indicate that ŵ[R](x, m) is alsoear stage of the instability, when the nonlinearities of the
decreasing in [0, l].equations play a more important role in the time evolution.

If the boundary condition (16b) is given on the derivative
of the solutionAPPENDIX

In this appendix we will show that df̂ [R]

dx
(l, m) 5 b̂[R](m)

iŵ[a](x, m)iy 5 1, m 5 0, ..., M 2 1, (A1)
(this holds for Zs; see Eq. (4)), then the boundary condi-
tions (20b), (20c) for ŵ[R](x, m) arewhere ŵ[a](x, m) are the correction solutions, and
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while, corresponding to the boundary conditions (A7)dŵ[R]

dx
(l, m) 5 0,

(A7)
we have

ŵ[R](0, m) 5 1 c1 5 0, c2 5 1.

which give In conclusion, in all the cases which we considered the
solution ŵ[R](x, m) is monotonically nonincreasing in the
interval [0, l] and this proves Eq. (A1).

c1 5
e2lk(m)

elk(m) 1 e2lk(m) , c2 5
elk(m)

elk(m) 1 e2lk(m) . (A8)
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ŵ[R](x, 0) 5 c1 x 1 c2 , (A9) 6. D. S. Harned and W. Kerner, J. Comput. Phys. 60, 62 (1985).

7. D. S. Harned and D. D. Schnack, J. Comput. Phys. 65, 57 (1986).
where c1 and c2 are constants which are determined by the 8. S. A. Orszag, J. Comput. Phys. 37, 70 (1980).
boundary conditions. The solution (A9) is monotonically 9. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral

Methods in Fluid Dynamics (Springer-Verlag, New York, 1988).nonincreasing when c1 # 0.
10. F. Porcelli, Phys. Fluids 30, 1734 (1987).

Actually, corresponding to the boundary conditions ex- 11. G. Einaudi and F. Rubini, Phys. Fluids B 1, 2224 (1989).
pressed by Eqs. (A6) we have 12. F. Malara, P. Veltri, and V. Carbone, Phys. Fluids B 4, 3070 (1992).

13. S. A. Orszag, J. Fluid Mech. 49, 75 (1971).
c1 5 21/l, c2 5 1, 14. S. A. Orszag, Stud. Appl. Math. 51, 253 (1972).


